
Foundations of Query Languages SS 2011 4. 4.

Foundations of Query Languages

Dr. Fang Wei

Lehrstuhl für Datenbanken und Informationssysteme
Universität Freiburg

SS 2011

Dr. Fang Wei 19. Juli 2011 Seite 1

Foundations of Query Languages SS 2011 6. Datalog and Complexity 6.1. P-Completeness of PLP

Positive Propositional Logic Programs

A Horn clause is a rule of the form

A0 ← A1, . . . ,Am (m ≥ 0)

where each Ai is a propositional atom.

A rule r of the form A0 ← is called a fact.

A logic program is a finite set of Horn clauses.

A atom A is true w.r.t. program P (denoted P |= A), if A is a classical
consequence of P.

Dr. Fang Wei 19. Juli 2011 Seite 2

Foundations of Query Languages SS 2011 6. Datalog and Complexity 6.1. P-Completeness of PLP

Positive Propositional Logic Programs

Example

a ← b
a ← c
c ← d , e
d ← f
e ← g
b ← h
f ←
g ←

P |= f ,P |= g ,P |= d , . . . ,P |= c

Dr. Fang Wei 19. Juli 2011 Seite 3

Foundations of Query Languages SS 2011 6. Datalog and Complexity 6.1. P-Completeness of PLP

Relationship to SAT Problem

Each program P can be viewed as a classical CNF φ(P)

Each rule r corresponds to a clause φ(r):

A0 ← A1, . . . ,Am
 A0 ∨ ¬A1 . . .¬Am

φ(P) =
∧

r∈P φ(r).

Theorem

P |= A holds if and only if φ(P) ∧ ¬A is unsatisfiable.

Dr. Fang Wei 19. Juli 2011 Seite 4

Foundations of Query Languages SS 2011 6. Datalog and Complexity 6.1. P-Completeness of PLP

Positive Propositional Logic Programs

Let A be all the atoms occurs in P. A model of P is the set M⊆ A which
satisfies every rule A0 ← A1, . . . ,Am in P, i.e., A0 ∈M whenever
{A1, . . . ,Am} ⊆ M.

The semantics of P is given by the least model of P, denoted lm(P), i.e.,
the unique minimal model of P.

Dr. Fang Wei 19. Juli 2011 Seite 5

Foundations of Query Languages SS 2011 6. Datalog and Complexity 6.1. P-Completeness of PLP

Positive Propositional Logic Programs

Example

a ← b
a ← c
c ← d , e
d ← f
e ← g
b ← h
f ←
g ←

lm(P)?

Dr. Fang Wei 19. Juli 2011 Seite 6

Foundations of Query Languages SS 2011 6. Datalog and Complexity 6.1. P-Completeness of PLP

Propositional LP

Existence of lm(P) is trivial (it always exists)

Reasoning: given a program P and an atom A, decide whether A ∈ lm(P)

Theorem

Propositional logic programming is P-complete.

Proof: (Membership)

The semantics of a given program P can be defined as the least fixpoint of
the immediate consequence operator TP

This least fixpoint lfp(TP) can be computed in polynomial time even if the
“naive” evaluation algorithm is applied.

The number of iterations is bounded by the number of rules plus 1.

Each iteration step is clearly feasible in polynomial time.

Dr. Fang Wei 19. Juli 2011 Seite 7

Foundations of Query Languages SS 2011 6. Datalog and Complexity 6.1. P-Completeness of PLP

Propositional LP P-hardness Proof

Proof: (Hardness)

Encoding of a a deterministic Turing machine (DTM) T . Given a DTM T ,
an input string I and a number of steps N, where N is a polynomial of |I |,
construct in logspace a program P = P(T , I ,N). An atom A such as
P |= A iff T accepts I in N steps.

The transition function δ of a DTM with a single tape can be represented
by a table whose rows are tuples t = 〈s, σ, s ′, σ′, d〉. Such a tuple t
expresses the following if-then-rule:

if at some time instant τ the DTM is in state s, the cursor points to cell
number π, and this cell contains symbol σ
then at instant τ + 1 the DTM is in state s ′, cell number π contains symbol
σ′, and the cursor points to cell number π + d .

Dr. Fang Wei 19. Juli 2011 Seite 8

Foundations of Query Languages SS 2011 6. Datalog and Complexity 6.1. P-Completeness of PLP

Propositional LP P-hardness Proof

Proof: (Hardness)

Encoding of a a deterministic Turing machine (DTM) T . Given a DTM T ,
an input string I and a number of steps N, where N is a polynomial of |I |,
construct in logspace a program P = P(T , I ,N). An atom A such as
P |= A iff T accepts I in N steps.

The transition function δ of a DTM with a single tape can be represented
by a table whose rows are tuples t = 〈s, σ, s ′, σ′, d〉. Such a tuple t
expresses the following if-then-rule:

if at some time instant τ the DTM is in state s, the cursor points to cell
number π, and this cell contains symbol σ
then at instant τ + 1 the DTM is in state s ′, cell number π contains symbol
σ′, and the cursor points to cell number π + d .

Dr. Fang Wei 19. Juli 2011 Seite 9

Foundations of Query Languages SS 2011 6. Datalog and Complexity 6.1. P-Completeness of PLP

Propositional LP P-hardness Proof

Proof: (Hardness)

Encoding of a a deterministic Turing machine (DTM) T . Given a DTM T ,
an input string I and a number of steps N, where N is a polynomial of |I |,
construct in logspace a program P = P(T , I ,N). An atom A such as
P |= A iff T accepts I in N steps.

The transition function δ of a DTM with a single tape can be represented
by a table whose rows are tuples t = 〈s, σ, s ′, σ′, d〉. Such a tuple t
expresses the following if-then-rule:

if at some time instant τ the DTM is in state s, the cursor points to cell
number π, and this cell contains symbol σ
then at instant τ + 1 the DTM is in state s ′, cell number π contains symbol
σ′, and the cursor points to cell number π + d .

Dr. Fang Wei 19. Juli 2011 Seite 10

Foundations of Query Languages SS 2011 6. Datalog and Complexity 6.1. P-Completeness of PLP

Propositional LP P-hardness: the atoms

The propositional atoms in P(T , I ,N).
(there are many, but only polynomially many...)

symbolα[τ, π] for 0 ≤ τ ≤ N, 0 ≤ π ≤ N and α ∈ Σ. Intuitive meaning: at
instant τ of the computation, cell number π contains symbol α.

cursor[τ, π] for 0 ≤ τ ≤ N and 0 ≤ π ≤ N. Intuitive meaning: at instant τ ,
the cursor points to cell number π.

states [τ] for 0 ≤ τ ≤ N and s ∈ S . Intuitive meaning: at instant τ , the
DTM T is in state s.

accept Intuitive meaning: T has reached state yes.

Dr. Fang Wei 19. Juli 2011 Seite 11

Foundations of Query Languages SS 2011 6. Datalog and Complexity 6.1. P-Completeness of PLP

Propositional LP P-hardness: the rules

initialization facts: in P(T , I ,N):

symbolσ[0, π] ← for 0 ≤ π < |I |, where Iπ = σ
symbol [0, π] ← for |I | ≤ π ≤ N

cursor[0, 0] ←
states0 [0] ←

The tape of the TM

. a b . . . b a a . . .

s0

c0 c1 cI−1

Dr. Fang Wei 19. Juli 2011 Seite 12

Foundations of Query Languages SS 2011 6. Datalog and Complexity 6.1. P-Completeness of PLP

Propositional LP P-hardness: the rules

transition rules: for each entry 〈s, σ, s ′, σ′, d〉, 0 ≤ τ < N, 0 ≤ π < N, and
0 ≤ π + d .

symbolσ′ [τ + 1, π] ← states [τ], symbolσ[τ, π], cursor[τ, π]
cursor[τ + 1, π + d] ← states [τ], symbolσ[τ, π], cursor[τ, π]

states′ [τ + 1] ← states [τ], symbolσ[τ, π], cursor[τ, π]

inertia rules: where 0 ≤ τ < N, 0 ≤ π < π′ ≤ N

symbolσ[τ + 1, π] ← symbolσ[τ, π], cursor[τ, π′]
symbolσ[τ + 1, π′] ← symbolσ[τ, π′], cursor[τ, π]

accept rules: for 0 ≤ τ ≤ N

accept ← stateyes[τ]

Dr. Fang Wei 19. Juli 2011 Seite 13

Foundations of Query Languages SS 2011 6. Datalog and Complexity 6.1. P-Completeness of PLP

Propositional LP P-hardness

The encoding precisely simulates the behaviour machine T on input I up to
N steps. (This can be formally shown by induction on the time steps.)

P(T , I ,N) |= accept iff the DTM T accepts the input string I within N
steps.

The construction is feasible in Logspace

Horn clause inference is P-complete

Dr. Fang Wei 19. Juli 2011 Seite 14

Foundations of Query Languages SS 2011 6. Datalog and Complexity 6.2. Datalog Complexity

Datalog Complexity

Query Data Complexity Program Complexity
Conjunctive query AC0 NP-complete
FO AC0 PSPACE-complete
Prop. LP P-complete
Datalog P-complete EXPTIME-complete
Stratified Datalog P-complete EXPTIME-complete
Datalog(WFM) P-complete EXPTIME-complete
Datalog(INF) P-complete EXPTIME-complete
Datalog(Stable Model) co-NP-complete co-NEXPTIME-complete

Disjun. Datalog Πp
2-complete co-NEXPTIMENP-complete

Dr. Fang Wei 19. Juli 2011 Seite 15

Foundations of Query Languages SS 2011 6. Datalog and Complexity 6.2. Datalog Complexity

Complexity of Datalog Programs – Data complexity

Theorem

Datalog is data complete for P.

Proof: (Membership)
Effective reduction to Propositional Logic Programming is possible. Given P, D,
A:

Generate ground(P,D)

Decide whether ground(P,D) |= A

Dr. Fang Wei 19. Juli 2011 Seite 16

Foundations of Query Languages SS 2011 6. Datalog and Complexity 6.2. Datalog Complexity

Grounding of Datalog Rules

Let UD be the universe of D (usually the active universe (domain), i.e., the
set of all domain elements present in D).

The grounding of a rule r , denoted ground(r ,D), is the set of all rules
obtained from r by all possible uniform substitutions of elements of UD for
the variables in r .

For any datalog program P and database D,

ground(P,D) =
⋃
r∈P

ground(r ,D).

Dr. Fang Wei 19. Juli 2011 Seite 17

Foundations of Query Languages SS 2011 6. Datalog and Complexity 6.2. Datalog Complexity

Grounding example

P and D:
parent(X ,Y)← father(X ,Y) parent(X ,Y)← mother(X ,Y)
ancestor(X ,Y)← parent(X ,Y)
ancestor(X ,Y)← parent(X ,Z), ancestor(Z ,Y)
father(john,mary), father(joe, kurt),mother(mary , joe),mother(tina, kurt)

ground(P ,D):

parent(john, john)← father(john, john)
parent(john, john)← father(john,marry)
. . .
parent(john, john)← mother(john, john)
parent(john,marry)← mother(john,marry)
. . .
ancestor(john, john)← parent(john, john)
. . .

Dr. Fang Wei 19. Juli 2011 Seite 18

Foundations of Query Languages SS 2011 6. Datalog and Complexity 6.2. Datalog Complexity

Grounding complexity

Given P,D, the number of rules in ground(P,D) is bounded by

|P| ∗#consts(D)vmax

vmax(≥ 1) is the maximum number of different variables in any rule r ∈ P

#consts(D) = |UD | is the number of constants in D (ass.: |UD | > 0).

ground(P ∪ D) can be exponential in the size of P.

ground(P ∪ D) is polynomial in the size of D.

hence, the complexity of propositional logic programming is an upper bound for
the data complexity.

Dr. Fang Wei 19. Juli 2011 Seite 19

Foundations of Query Languages SS 2011 6. Datalog and Complexity 6.2. Datalog Complexity

Datalog data complexity: hardness

Proof: Hardness The P-hardness can be shown by writing a simple datalog
meta-interpreter for propositional LP(k), where k is a constant.

Represent rules A0 ← A1, . . . ,Ai , where 0 ≤ i ≤ k , by tuples 〈A0, . . . ,Ai 〉
in an (i + 1)-ary relation Ri on the propositional atoms.

Then, a program P in LP(k) which is stored this way in a database D(P)
can be evaluated by a fixed datalog program PMI (k) which contains for
each relation Ri , 0 ≤ i ≤ k , a rule

T (X0)← T (X1), . . . ,T (Xi),Ri (X0, . . . ,Xi).

T (x) intuitively means that atom x is true. Then, P |= A just if
PMI ∪ P(D) |= T (A). P-hardness of the data complexity of datalog is then
immediately obtained.

Dr. Fang Wei 19. Juli 2011 Seite 20

Foundations of Query Languages SS 2011 6. Datalog and Complexity 6.2. Datalog Complexity

Program Complexity Datalog

Theorem

Datalog is program complete for EXPTIME.

Membership. Grounding P on D leads to a propositional program
grounding(P,D) whose size is exponential in the size of the fixed input
database D. Hence, the program complexity is in EXPTIME.

Hardness.

Adapt the propositional program P(T , I ,N) deciding acceptance of input I
for T within N steps, where N = 2m, m = nk(n = |I |) to a datalog program
Pdat(T , I ,N)
Note: We can not simply generate P(T , I ,N), since this program is
exponentially large (and thus the reduction would not be polynomial!)

Dr. Fang Wei 19. Juli 2011 Seite 21

Foundations of Query Languages SS 2011 6. Datalog and Complexity 6.2. Datalog Complexity

Datalog Program Complexity: Hardness

Main ideas for lifting P(T , I ,N) to Pdat(T , I ,N):

use the predicates symbolσ(X ,Y), cursor(X ,Y) and states(X) instead of
the propositional letters symbolσ[X ,Y], cursor[X ,Y] and states [X]
respectively.

The time points τ and tape positions π from 0 to N − 1 are encoded in
binary, i.e. by m-ary tuples tτ = 〈c1, . . . , cm〉, ci ∈ {0, 1}, i = 1, . . . ,m,
such that 0 = 〈0, . . . , 0〉, 1 = 〈0, . . . , 1〉, N − 1 = 〈1, . . . , 1〉.
The functions τ + 1 and π + d are realized by means of the successor
Succm from a linear order ≤m on Um.

Dr. Fang Wei 19. Juli 2011 Seite 22

Foundations of Query Languages SS 2011 6. Datalog and Complexity 6.2. Datalog Complexity

Datalog Program Complexity: Hardness

The ground facts Succ1(0, 1), First1(0), and Last1(1) are provided.

The initialization facts symbolσ[0, π] are readily translated into the datalog
rules

symbolσ(X, t)← Firstm(X),

where t represents the position π,

Similarly the facts cursor[0, 0] and states0 [0].

Initialization facts symbol [0, π], where |I | ≤ π ≤ N, are translated to the
rule

symbol (X,Y)← Firstm(X), ≤m(t,Y)

where t represents the number |I |.

Dr. Fang Wei 19. Juli 2011 Seite 23

Foundations of Query Languages SS 2011 6. Datalog and Complexity 6.2. Datalog Complexity

Datalog Program Complexity: Hardness

Transition and inertia rules: for realizing τ + 1 and π + d , use in the body
atoms Succm(X,X′). For example, the clause

symbolσ′ [τ + 1, π]← states [τ], symbolσ[τ, π], cursor[τ, π]

is translated into

symbolσ′(X′,Y)← states(X), symbolσ(X,Y), cursor(X,Y),Succm(X,X′).

The translation of the accept rules is straightforward.

Dr. Fang Wei 19. Juli 2011 Seite 24

Foundations of Query Languages SS 2011 6. Datalog and Complexity 6.2. Datalog Complexity

Defining Succm(X,X′) and ≤m

The ground facts Succ1(0, 1), First1(0), and Last1(1) are provided.

For an inductive definition, suppose Succi (X,Y), Firsti (X), and Lasti (X)
tell the successor, the first, and the last element from a linear order ≤i on
U i , where X and Y have arity i . Then, use rules

Succi+1(Z ,X,Z ,Y) ← Succi (X,Y)

Succi+1(Z ,X,Z ′,Y) ← Succ1(Z ,Z ′), Lasti (X),Firsti (Y)

Firsti+1(Z ,X) ← First1(Z),Firsti (X)

Lasti+1(Z ,X) ← Last1(Z), Lasti (X)

Dr. Fang Wei 19. Juli 2011 Seite 25

Foundations of Query Languages SS 2011 6. Datalog and Complexity 6.2. Datalog Complexity

Defining Succm(X,X′) and ≤m

The ground facts Succ1(0, 1), First1(0), and Last1(1) are provided.

For an inductive definition, suppose Succi (X,Y), Firsti (X), and Lasti (X)
tell the successor, the first, and the last element from a linear order ≤i on
U i , where X and Y have arity i . Then, use rules

Succi+1(0,X, 0,Y) ← Succi (X,Y)

Succi+1(1,X, 1,Y) ← Succi (X,Y)

Succi+1(0,X, 1,Y) ← Lasti (X),Firsti (Y)

Firsti+1(0,X) ← Firsti (X)

Lasti+1(1,X) ← Lasti (X)

Dr. Fang Wei 19. Juli 2011 Seite 26

Foundations of Query Languages SS 2011 6. Datalog and Complexity 6.2. Datalog Complexity

Defining Succm(X,X′) and ≤m

The ground facts Succ1(0, 1), First1(0), and Last1(1) are provided.

For an inductive definition, suppose Succi (X,Y), Firsti (X), and Lasti (X)
tell the successor, the first, and the last element from a linear order ≤i on
U i , where X and Y have arity i . Then, use rules

Succi+1(0,X, 0,Y) ← Succi (X,Y)

Succi+1(1,X, 1,Y) ← Succi (X,Y)

Succi+1(0,X, 1,Y) ← Lasti (X),Firsti (Y)

Firsti+1(0,X) ← Firsti (X)

Lasti+1(1,X) ← Lasti (X)

The order ≤m is easily defined from Succm by two clauses

≤m(X,X) ←
≤m(X,Y) ← Succm(X,Z), ≤m (Z,Y)

Dr. Fang Wei 19. Juli 2011 Seite 27

Foundations of Query Languages SS 2011 6. Datalog and Complexity 6.2. Datalog Complexity

Datalog Program Complexity Conclusion

Let Pdat(T , I ,N) denote the datalog program with empty edb described for
T , I , and N = 2m, m = nk (where n = |I |)
Pdat(T , I ,N) is constructible from T and I in polynomial time (in fact,
careful analysis shows feasibility in logarithmic space).

Pdat(T , I ,N) has accept in its least model ⇔ T accepts input I within N
steps.

Thus, the decision problem for any language in EXPTIME is reducible to
deciding P |= A for datalog program P and fact A.

Consequently, deciding P |= A for a given datalog program P and fact A is
EXPTIME-hard.

Dr. Fang Wei 19. Juli 2011 Seite 28

	Datalog and Complexity
	P-Completeness of PLP
	Datalog Complexity

