Foundations of Query Languages

Dr. Fang Wei

Lehrstuhl für Datenbanken und Informationssysteme Universität Freiburg

SS 2011

Dr. Fang Wei

◆□▶ ◆□▶ ◆三▶ ◆三▶

Positive Propositional Logic Programs

A Horn clause is a rule of the form

$$A_0 \leftarrow A_1, \ldots, A_m \quad (m \ge 0)$$

where each A_i is a propositional atom.

- A rule *r* of the form $A_0 \leftarrow$ is called a fact.
- A logic program is a finite set of Horn clauses.
- A atom A is true w.r.t. program P (denoted $P \models A$), if A is a classical consequence of P.

(ロ) (同) (E) (E) (E)

Positive Propositional Logic Programs

Example

а	\leftarrow	b
а	\leftarrow	С
С	\leftarrow	d, e
d	\leftarrow	f
е	\leftarrow	g
b	\leftarrow	h
f	\leftarrow	
g	\leftarrow	

 $P \models f, P \models g, P \models d, \dots, P \models c$

Relationship to SAT Problem

- Each program P can be viewed as a classical CNF $\phi(P)$
- Each rule *r* corresponds to a clause $\phi(r)$:

$$A_0 \leftarrow A_1, \ldots, A_m \rightleftharpoons A_0 \lor \neg A_1 \ldots \neg A_m$$

$$\phi(P) = \bigwedge_{r \in P} \phi(r).$$

Theorem

 $P \models A$ holds if and only if $\phi(P) \land \neg A$ is unsatisfiable.

æ

Positive Propositional Logic Programs

- Let \mathcal{A} be all the atoms occurs in P. A model of P is the set $\mathcal{M} \subseteq \mathcal{A}$ which satisfies every rule $A_0 \leftarrow A_1, \ldots, A_m$ in P, i.e., $A_0 \in \mathcal{M}$ whenever $\{A_1, \ldots, A_m\} \subseteq \mathcal{M}$.
- The semantics of P is given by the *least model* of P, denoted Im(P), i.e., the unique minimal model of P.

・ロン ・回 と ・ ヨ と ・ ヨ と

Positive Propositional Logic Programs

Example

а	\leftarrow	Ь
а	\leftarrow	С
С	\leftarrow	d, e
d	\leftarrow	f
е	\leftarrow	g
b	\leftarrow	h
f	\leftarrow	
g	\leftarrow	

Im(P)?

æ

イロト イヨト イヨト イヨト

Propositional LP

- Existence of Im(P) is trivial (it always exists)
- Reasoning: given a program P and an atom A, decide whether $A \in Im(P)$

Theorem

Propositional logic programming is P-complete.

Proof: (Membership)

- The semantics of a given program P can be defined as the least fixpoint of the immediate consequence operator T_P
- This least fixpoint *lfp*(**T**_{*P*}) can be computed in polynomial time even if the "naive" evaluation algorithm is applied.
- The number of iterations is bounded by the number of rules plus 1.
- Each iteration step is clearly feasible in polynomial time.

Propositional LP P-hardness Proof

Proof: (Hardness)

- Encoding of a a deterministic Turing machine (DTM) T. Given a DTM T, an input string I and a number of steps N, where N is a polynomial of |I|, construct in logspace a program P = P(T, I, N). An atom A such as $P \models A$ iff T accepts I in N steps.
- The transition function δ of a DTM with a single tape can be represented by a table whose rows are tuples $t = \langle s, \sigma, s', \sigma', d \rangle$. Such a tuple texpresses the following if-then-rule:

if at some time instant τ the DTM is in state s, the cursor points to cell number π , and this cell contains symbol σ then at instant $\tau + 1$ the DTM is in state s', cell number π contains symbol σ' , and the cursor points to cell number $\pi + d$.

Image: A match a ma

Propositional LP P-hardness Proof

Proof: (Hardness)

- Encoding of a a deterministic Turing machine (DTM) T. Given a DTM T, an input string I and a number of steps N, where N is a polynomial of |I|, construct in logspace a program P = P(T, I, N). An atom A such as $P \models A$ iff T accepts I in N steps.
- The transition function δ of a DTM with a single tape can be represented by a table whose rows are tuples $t = \langle s, \sigma, s', \sigma', d \rangle$. Such a tuple texpresses the following if-then-rule:

if at some time instant τ the DTM is in state s, the cursor points to cell number π , and this cell contains symbol σ

then at instant $\tau + 1$ the DTM is in state s', cell number π contains symbol σ' , and the cursor points to cell number $\pi + d$.

Propositional LP P-hardness Proof

Proof: (Hardness)

- Encoding of a a deterministic Turing machine (DTM) T. Given a DTM T, an input string I and a number of steps N, where N is a polynomial of |I|, construct in logspace a program P = P(T, I, N). An atom A such as $P \models A$ iff T accepts I in N steps.
- The transition function δ of a DTM with a single tape can be represented by a table whose rows are tuples $t = \langle s, \sigma, s', \sigma', d \rangle$. Such a tuple texpresses the following if-then-rule:

if at some time instant τ the DTM is in state s, the cursor points to cell number π , and this cell contains symbol σ then at instant $\tau + 1$ the DTM is in state s', cell number π contains symbol σ' , and the cursor points to cell number $\pi + d$.

Propositional LP P-hardness: the atoms

The propositional atoms in P(T, I, N). (there are many, but only polynomially many...) $symbol_{\alpha}[\tau, \pi]$ for $0 \le \tau \le N$, $0 \le \pi \le N$ and $\alpha \in \Sigma$. Intuitive meaning: at instant τ of the computation, cell number π contains symbol α . $cursor[\tau, \pi]$ for $0 \le \tau \le N$ and $0 \le \pi \le N$. Intuitive meaning: at instant τ , the cursor points to cell number π . $state_{s}[\tau]$ for $0 \le \tau \le N$ and $s \in S$. Intuitive meaning: at instant τ , the DTM T is in state s. accept Intuitive meaning: T has reached state yes.

・ロト ・回ト ・ヨト

Propositional LP P-hardness: the rules

initialization facts: in P(T, I, N):

$$\begin{array}{lll} symbol_{\sigma}[0,\pi] & \leftarrow & \quad \text{for } 0 \leq \pi < |I|, \text{ where } I_{\pi} = \sigma \\ symbol_{\sqcup}[0,\pi] & \leftarrow & \quad \text{for } |I| \leq \pi \leq N \\ cursor[0,0] & \leftarrow & \\ state_{s_0}[0] & \leftarrow & \end{array}$$

The tape of the TM

臣

- ∢ ⊒ →

・ロト ・同ト ・ヨト ・ヨト

Propositional LP P-hardness: the rules

transition rules: for each entry $\langle s, \sigma, s', \sigma', d \rangle$, $0 \le \tau < N$, $0 \le \pi < N$, and $0 \le \pi + d$.

$$\begin{array}{rcl} \textit{symbol}_{\sigma'}[\tau+1,\pi] & \leftarrow & \textit{state}_{s}[\tau],\textit{symbol}_{\sigma}[\tau,\pi],\textit{cursor}[\tau,\pi]\\ \textit{cursor}[\tau+1,\pi+d] & \leftarrow & \textit{state}_{s}[\tau],\textit{symbol}_{\sigma}[\tau,\pi],\textit{cursor}[\tau,\pi]\\ & \textit{state}_{s'}[\tau+1] & \leftarrow & \textit{state}_{s}[\tau],\textit{symbol}_{\sigma}[\tau,\pi],\textit{cursor}[\tau,\pi] \end{array}$$

• inertia rules: where $0 \le \tau < N$, $0 \le \pi < \pi' \le N$

$$\begin{array}{lcl} \textit{symbol}_{\sigma}[\tau+1,\pi] & \leftarrow & \textit{symbol}_{\sigma}[\tau,\pi],\textit{cursor}[\tau,\pi'] \\ \textit{symbol}_{\sigma}[\tau+1,\pi'] & \leftarrow & \textit{symbol}_{\sigma}[\tau,\pi'],\textit{cursor}[\tau,\pi] \end{array}$$

• accept rules: for $0 \le \tau \le N$

$$\textit{accept} \ \leftarrow \ \textit{state}_{\mathtt{yes}}[au]$$

Propositional LP P-hardness

- The encoding precisely simulates the behaviour machine T on input I up to N steps. (This can be formally shown by induction on the time steps.)
- $P(T, I, N) \models accept$ iff the DTM T accepts the input string I within N steps.
- The construction is feasible in Logspace

Horn clause inference is P-complete

< □ > < □ > < □ > < □ > < □ > < □ >

Datalog Complexity

Query	Data Complexity	Program Complexity
Conjunctive query	AC_0	NP-complete
FO	AC_0	PSPACE-complete
Prop. LP		P-complete
Datalog	P-complete	EXPTIME-complete
Stratified Datalog	P-complete	EXPTIME-complete
Datalog(WFM)	P-complete	EXPTIME-complete
Datalog(INF)	P-complete	EXPTIME-complete
Datalog(Stable Model)	co-NP-complete	co-NEXPTIME-complete
Disjun. Datalog	Π_2^p -complete	co-NEXPTIME ^{NP} -complete

æ

Complexity of Datalog Programs - Data complexity

Theorem

Datalog is data complete for P.

Proof: (Membership)

Effective reduction to Propositional Logic Programming is possible. Given P, D, A:

- Generate *ground*(*P*, *D*)
- Decide whether $ground(P, D) \models A$

Grounding of Datalog Rules

- Let U_D be the universe of D (usually the active universe (domain), i.e., the set of all domain elements present in D).
- The grounding of a rule r, denoted ground(r, D), is the set of all rules obtained from r by all possible uniform substitutions of elements of U_D for the variables in r.

For any datalog program P and database D,

ł

$$ground(P,D) = \bigcup_{r \in P} ground(r,D).$$

・ロト ・回ト ・ヨト ・ヨト

Grounding example

P and D:

```
parent(X, Y) \leftarrow father(X, Y) \quad parent(X, Y) \leftarrow mother(X, Y)

ancestor(X, Y) \leftarrow parent(X, Y)

ancestor(X, Y) \leftarrow parent(X, Z), ancestor(Z, Y)

father(john, mary), father(joe, kurt), mother(mary, joe), mother(tina, kurt)
```

ground(P, D):

```
parent(john, john) \leftarrow father(john, john)
parent(john, john) \leftarrow father(john, marry)
...
```

```
parent(john, john) ← mother(john, john)
parent(john, marry) ← mother(john, marry)
```

```
ancestor(john, john) \leftarrow parent(john, john)
```

. . .

. . .

イロト イポト イヨト イヨト

Grounding complexity

Given P, D, the number of rules in ground(P, D) is bounded by

 $|P| * # consts(D)^{vmax}$

- $vmax(\geq 1)$ is the maximum number of different variables in any rule $r \in P$
- $\#consts(D) = |U_D|$ is the number of constants in D (ass.: $|U_D| > 0$).
- $ground(P \cup D)$ can be exponential in the size of P.
- $ground(P \cup D)$ is polynomial in the size of D.

hence, the complexity of propositional logic programming is an upper bound for the data complexity.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Datalog data complexity: hardness

Proof: Hardness The P-hardness can be shown by writing a simple datalog *meta-interpreter* for propositional LP(k), where k is a constant.

- Represent rules A₀ ← A₁,..., A_i, where 0 ≤ i ≤ k, by tuples ⟨A₀,..., A_i⟩ in an (i + 1)-ary relation R_i on the propositional atoms.
- Then, a program P in LP(k) which is stored this way in a database D(P) can be evaluated by a fixed datalog program $P_{MI}(k)$ which contains for each relation R_i , $0 \le i \le k$, a rule

$$T(X_0) \leftarrow T(X_1), \ldots, T(X_i), R_i(X_0, \ldots, X_i).$$

 T(x) intuitively means that atom x is true. Then, P ⊨ A just if P_{MI} ∪ P(D) ⊨ T(A). P-hardness of the data complexity of datalog is then immediately obtained.

・ロト ・同ト ・ヨト ・ヨト

Program Complexity Datalog

Theorem

Datalog is program complete for EXPTIME.

Membership. Grounding P on D leads to a propositional program grounding(P, D) whose size is exponential in the size of the fixed input database D. Hence, the program complexity is in EXPTIME.

Hardness.

- Adapt the propositional program P(T, I, N) deciding acceptance of input I for T within N steps, where $N = 2^m$, $m = n^k (n = |I|)$ to a datalog program $P_{dat}(T, I, N)$
- Note: We can not simply generate P(T, I, N), since this program is exponentially large (and thus the reduction would not be polynomial!)

イロト イポト イヨト イヨト

Datalog Program Complexity: Hardness

Main ideas for lifting P(T, I, N) to $P_{dat}(T, I, N)$:

- use the predicates symbol_σ(X, Y), cursor(X, Y) and state_s(X) instead of the propositional letters symbol_σ[X, Y], cursor[X, Y] and state_s[X] respectively.
- The time points τ and tape positions π from 0 to N-1 are encoded in binary, i.e. by *m*-ary tuples $t_{\tau} = \langle c_1, \ldots, c_m \rangle$, $c_i \in \{0, 1\}$, $i = 1, \ldots, m$, such that $0 = \langle 0, \ldots, 0 \rangle$, $1 = \langle 0, \ldots, 1 \rangle$, $N-1 = \langle 1, \ldots, 1 \rangle$.
- The functions $\tau + 1$ and $\pi + d$ are realized by means of the successor $Succ^{m}$ from a linear order \leq^{m} on U^{m} .

Datalog Program Complexity: Hardness

The ground facts $Succ^{1}(0, 1)$, $First^{1}(0)$, and $Last^{1}(1)$ are provided.

 \blacksquare The initialization facts $symbol_{\sigma}[0,\pi]$ are readily translated into the datalog rules

$$symbol_{\sigma}(\mathbf{X}, \mathbf{t}) \leftarrow \textit{First}^{m}(\mathbf{X}),$$

where \mathbf{t} represents the position π ,

- Similarly the facts *cursor*[0, 0] and *state*_{s0}[0].
- Initialization facts symbol_u[0, π], where $|I| \le \pi \le N$, are translated to the rule

$$symbol_{u}(\mathbf{X},\mathbf{Y}) \leftarrow \textit{First}^{m}(\mathbf{X}), \ \leq^{m}(\mathbf{t},\mathbf{Y})$$

where **t** represents the number |I|.

Datalog Program Complexity: Hardness

Transition and inertia rules: for realizing $\tau + 1$ and $\pi + d$, use in the body atoms $Succ^{m}(\mathbf{X}, \mathbf{X}')$. For example, the clause

$$symbol_{\sigma'}[\tau+1,\pi] \leftarrow state_s[\tau], symbol_{\sigma}[\tau,\pi], cursor[\tau,\pi]$$

is translated into

 $symbol_{\sigma'}(\mathbf{X}', \mathbf{Y}) \leftarrow state_s(\mathbf{X}), symbol_{\sigma}(\mathbf{X}, \mathbf{Y}), cursor(\mathbf{X}, \mathbf{Y}), Succ^m(\mathbf{X}, \mathbf{X}').$

The translation of the accept rules is straightforward.

Defining $Succ^{m}(\mathbf{X}, \mathbf{X}')$ and \leq^{m}

- The ground facts $Succ^{1}(0,1)$, $First^{1}(0)$, and $Last^{1}(1)$ are provided.
- For an inductive definition, suppose $Succ^{i}(\mathbf{X}, \mathbf{Y})$, $First^{i}(\mathbf{X})$, and $Last^{i}(\mathbf{X})$ tell the successor, the first, and the last element from a linear order \leq^{i} on U^{i} , where \mathbf{X} and \mathbf{Y} have arity *i*. Then, use rules

$$\begin{array}{rcl} Succ^{i+1}(Z,\mathbf{X},Z,\mathbf{Y}) &\leftarrow & Succ^{i}(\mathbf{X},\mathbf{Y}) \\ Succ^{i+1}(Z,\mathbf{X},Z',\mathbf{Y}) &\leftarrow & Succ^{1}(Z,Z'), Last^{i}(\mathbf{X}), First^{i}(\mathbf{Y}) \\ & First^{i+1}(Z,\mathbf{X}) &\leftarrow & First^{1}(Z), First^{i}(\mathbf{X}) \\ & Last^{i+1}(Z,\mathbf{X}) &\leftarrow & Last^{1}(Z), Last^{i}(\mathbf{X}) \end{array}$$

Defining $Succ^{m}(\mathbf{X}, \mathbf{X}')$ and \leq^{m}

- The ground facts $Succ^{1}(0,1)$, $First^{1}(0)$, and $Last^{1}(1)$ are provided.
- For an inductive definition, suppose $Succ^{i}(\mathbf{X}, \mathbf{Y})$, $First^{i}(\mathbf{X})$, and $Last^{i}(\mathbf{X})$ tell the successor, the first, and the last element from a linear order \leq^{i} on U^{i} , where \mathbf{X} and \mathbf{Y} have arity *i*. Then, use rules

$$\begin{array}{rcl} \textit{Succ}^{i+1}(0,\textbf{X},0,\textbf{Y}) & \leftarrow & \textit{Succ}^{i}(\textbf{X},\textbf{Y}) \\ \textit{Succ}^{i+1}(1,\textbf{X},1,\textbf{Y}) & \leftarrow & \textit{Succ}^{i}(\textbf{X},\textbf{Y}) \\ \textit{Succ}^{i+1}(0,\textbf{X},1,\textbf{Y}) & \leftarrow & \textit{Last}^{i}(\textbf{X}),\textit{First}^{i}(\textbf{Y}) \\ \textit{First}^{i+1}(0,\textbf{X}) & \leftarrow & \textit{First}^{i}(\textbf{X}) \\ \textit{Last}^{i+1}(1,\textbf{X}) & \leftarrow & \textit{Last}^{i}(\textbf{X}) \end{array}$$

Defining $Succ^{m}(\mathbf{X}, \mathbf{X}')$ and \leq^{m}

- The ground facts $Succ^{1}(0,1)$, $First^{1}(0)$, and $Last^{1}(1)$ are provided.
- For an inductive definition, suppose $Succ^{i}(\mathbf{X}, \mathbf{Y})$, $First^{i}(\mathbf{X})$, and $Last^{i}(\mathbf{X})$ tell the successor, the first, and the last element from a linear order \leq^{i} on U^{i} , where \mathbf{X} and \mathbf{Y} have arity *i*. Then, use rules

$$\begin{array}{rcl} Succ^{i+1}(0,\mathbf{X},0,\mathbf{Y}) &\leftarrow & Succ^{i}(\mathbf{X},\mathbf{Y})\\ Succ^{i+1}(1,\mathbf{X},1,\mathbf{Y}) &\leftarrow & Succ^{i}(\mathbf{X},\mathbf{Y})\\ Succ^{i+1}(0,\mathbf{X},1,\mathbf{Y}) &\leftarrow & Last^{i}(\mathbf{X}), First^{i}(\mathbf{Y})\\ & First^{i+1}(0,\mathbf{X}) &\leftarrow & First^{i}(\mathbf{X})\\ & Last^{i+1}(1,\mathbf{X}) &\leftarrow & Last^{i}(\mathbf{X}) \end{array}$$

• The order \leq^m is easily defined from $Succ^m$ by two clauses

$$\leq^{m}(\mathbf{X}, \mathbf{X}) \leftarrow \leq^{m}(\mathbf{X}, \mathbf{Y}) \leftarrow Succ^{m}(\mathbf{X}, \mathbf{Z}), \leq^{m} (\mathbf{Z}, \mathbf{Y})$$

イロト イヨト イヨト イヨト

Datalog Program Complexity Conclusion

- Let $P_{dat}(T, I, N)$ denote the datalog program with empty *edb* described for T, I, and $N = 2^m$, $m = n^k$ (where n = |I|)
- $P_{dat}(T, I, N)$ is constructible from T and I in polynomial time (in fact, careful analysis shows feasibility in logarithmic space).
- $P_{dat}(T, I, N)$ has accept in its least model $\Leftrightarrow T$ accepts input I within N steps.
- Thus, the decision problem for any language in EXPTIME is reducible to deciding *P* |= *A* for datalog program *P* and fact *A*.
- Consequently, deciding $P \models A$ for a given datalog program P and fact A is EXPTIME-hard.